

2024 HSC TRIAL EXAMINATION

Mathematics Advanced

Total Marks - 100

Section I – Pages 3 – 5 **10 marks**

Allow about 15 minutes for this section.

Sections II-V – Pages 7 – 40 **90 marks**

- Attempt questions from questions 11 30.
- Answer all questions in the booklets provided.
- Allow about 2 hours and 45 minutes for this section.

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using a black pen.
- Write your Student Number at the top of every page.

This paper MUST NOT be removed from the examination room.

2023 JRAHS Mathematics Advanced HSC Trial Examination

Section I

10 marks.

Attempt Questions 1–10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1 - 10.

- 1. Consider the function f(x) = |x + 2| + 1. Which of the following is a true statement?
 - (A) The function is continuous and differentiable for every value of x.
 - (B) The function is not continuous but differentiable for every value of x.
 - (C) The function is not continuous and not differentiable for every value of x.
 - (D) The function is continuous but not differentiable for every value of x.
- 2. Consider the function $f(x) = \ln(x + \sqrt{x^2 + 1})$. Which of the following describes f(x)?
 - (A) An even many-to-one function.
 - (B) An odd many-to-one function.
 - (C) An even one-to-one function.
 - (D) An odd one-to-one function.
- 3. For what values of k does the quadratic equation $x^2 + kx 2k = 0$ have real roots?
 - (A) $k \in (-\infty, -8) \cup (0, \infty)$
 - (B) $k \in (-\infty, -8] \cup [0, \infty)$
 - (C) $k \in (-8,0)$
 - (D) $k \in [-8,0]$
- 4. Which of the following gives the magnitude of the smallest angle in the triangle below to the nearest degree?

- (A) 30°
- (B) 45°
- (C) 53°
- (D) 79°

5. The following pareto chart shows the reasons for suspensions at a school.

Reason for Suspension

Which of the following accounted for more than 80% of suspensions?

- (A) Plagiarism.
- (B) Mobile Phone.
- (C) Mobile Phone, Plagiarism and Truanting.
- (D) Truanting, Theft, Fighting and Other.
- 6. *A* and *B* are events such that:

$$P(A \cap B) = \frac{2}{5}$$
 and $P(A \cap B') = \frac{3}{7}$

Which of the following is the value of P(B'|A)?

- (A) $\frac{6}{35}$ (B) $\frac{15}{29}$ (C) $\frac{14}{35}$ (D) $\frac{29}{35}$
- 7. Consider the discrete probability distribution function with random variable X defined in the table below:

	x	-2	0	b	2b	4
P(X	X = x	a	b	b	2b	0.2

Which of the following is true for the expected value E(X)?

- (A) $-0.8 \le E(X) \le 1$
- (B) $0 \le E(X) \le 1$
- $0.2 \le E(X) \le 0.8$ (C)
- (D) $0 \le E(X) \le 2.4$

- 8. Which of the following is the value of the gradient of the tangent to $y = -\frac{1}{x}$ at the point $\left(2, \frac{-1}{2}\right)$?
 - (A) 4
 - (B) -4
 - (C) $\frac{1}{4}$
 - (D) $-\frac{1}{4}$
- 9. The graph of a function f is obtained when the graph of function g with the rule $g(x) = x^2 3x 10$ is translated by 7 units in the vertical direction followed by a reflection across the y-axis.

Which of the following is the rule for the function f?

- (A) $x^2 + 3x 3$
- (B) $-x^2 + 3x + 3$
- (C) $x^2 2x 22$
- (D) $-x^2 + 2x + 22$
- 10. If $\int_{2}^{6} f(x)dx = 8$, to which of the following is $\int_{4}^{8} 2f(x-2)dx$ equal?
 - (A) 4
 - (B) 6
 - (C) 16
 - (D) None of the above.

		~ :	 N 1	

Question 11 (4 marks)

Marks

Katie has deliberately designed a biased six-sided die with the following probability distribution for X, the number showing on the uppermost face when the die is rolled.

x	1	2	3	4	5	6
P(X=x)	$\frac{1-\theta}{6}$	$\frac{1-\theta}{6}$	$\frac{1-\theta}{6}$	$\frac{1+\theta}{6}$	$\frac{1+\theta}{6}$	$\frac{1+\theta}{6}$

(a) What values of θ allow for $P(X)$ to be a probability distribution function?	2
(b) Find $P(1 \le X \le 4)$ in terms of θ .	1
(c) Find the probability of rolling an even number in terms of θ .	1

Question 12 (5 marks)	Marks

Janet and Alan are playing a tennis match. The probability of Janet winning the first set is 0.3. After that, Janet's probability of winning a set is 0.6 if she won the previous set, or 0.4 if she lost the previous set. The match will continue until either Janet or Alan wins two sets.

(a) Draw a probability tree diagram to describe the match.

(b) Find the expected value of the number of sets that the match will last.						
(c) Find the probability that Alan wins, given the match lasted 3 sets.						

l l		Stu	dent	Nun	nber

Question 13 (2 marks)

Marks

Two sectors A_1 and A_2 are constructed along the interval AC. AO = 4 and OC = 3 as shown in the diagram below.

If the area of A_1 is twice	the area of A_2 , find the value of θ .		
Question 14 (2 marks)			
Prove:	$\frac{\cot x + \csc x}{\tan x + \sin x} = \cot x \csc x$	2	

Question 15 (5 marks)	Marks
Solve $2\cos^2 x - 3\cos x = 2$ for $0 \le x \le 2\pi$, leaving your answer in exact form.	3
(b) Solve $3 \sin x + \sqrt{3} \cos x = 0$ over the domain $0 \le x \le 2\pi$.	2

	C+	4	Nim	a b a m
	Stu	dont	Nun	nhar

Question 16 (5 marks)

Marks

A circle with centre O and radius 10m is drawn on a vertical wall, standing on a horizontal floor. Point A is vertically below O and $\angle AOB = 90^{\circ}$ as shown in the diagram below.

A laser pointer is aimed from a point D on the ground. The angles of elevation of A and B from D are 30° and 60° respectively. Let A be h metres above the ground and $\angle ADB = 30^\circ$. (a) Write expressions for AD and BD in terms of h .	2
	•
(b) Hence find the exact value of h.	3
	•

		Stu	dent	Nlur	nhor

Mathematics Advanced Section III Answer Booklet

21 marks. Attempt Questions 17–20.

Instructions

- Write you student number at the top of each page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your response should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Student Number							

Question 17 (7 marks)	Marks
Consider the curve $y = x^3 - 6x^2 + 7$.	
(a) Find the coordinates of any stationary points and determine their nature.	3
	••••••
(b) Find the coordinates of any points of inflexion.	2
(b) Find the coordinates of any points of inflexion.	L
	•••••
	••••••

		Stu	dent	Nur	nber

(c) Sketch the graph, clearly showing all the points found in (a) and (b) and y-intercepts. You do NOT need to find x-intercepts.

		- ·	 <u> </u>	

Question 18 (5 marks)	Marks
(a) Differentiate xe^{5x} with respect to x .	2
(b) Hence evaluate $\int_0^{10} 5xe^{5x} dx$	_
(b) Hence evaluate $\int_{0}^{\infty} 5xe^{5x}dx$	3
20	

Question 19 (3 marks)	Marks
Differentiate $f(x) = x^2 - 4x + 5$ from first principles.	3

	larks
The velocity of a particle travelling on the x axis is given by $v(t) = \frac{1}{t+1} - \frac{1}{2}$ for $t \ge 0$.	
(a) Show that the particle is stationary when $t = 1$.	1
(a) she if the political is suntained.	-
(b) Explain why the particle is moving to the left for all times $t > 1$.	2
	· • • • • • • • • • • • • • • • • • • •
	••••••
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(c) Find the distance travelled by the particle in the first 3 seconds, correct to one decimal	al 3
place.	
1	
	••••••
	· • • • • • • • • • • • • • • • • • • •
	••••••
	· • • • • • • • • • • • • • • • • • • •

Mathematics Advanced Section IV Answer Booklet

23 marks. Attempt Questions 21–25.

Instructions

- Write you student number at the top of each page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your response should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Question 21 (3 marks)

Marks

The curves $y = e^{-x}$ and $y = e^{-\frac{x}{2}} - \frac{1}{4}$ intersect at the point P as shown in the diagram below.

(a)	Show that the point of intersection, P, is $\left(\ln 4, \frac{1}{4}\right)$.	1

 •••••	•••••	••••••	••••••

(b)	Hence find the area bounded by the two curves and the <i>y</i> -axis, as shaded in the diagram.	2

Question 22 (2 marks)	Marks
Find: $\int \frac{1-x}{x^3} dx$	2

	01			
	O4	-l 4	N I	-
	Stu	dent	Nun	nber

Question 23 (3 marks)

Marks

A discrete random variable has a probability distribution as shown in the table below where n is a finite, positive integer and r is any real number other than 1.

х	r	r^2	r^3	•••	r^k	•••	r^n
P(X=x)	r^n	r^{n-1}	r^{n-2}		r^{n-k+1}	•••	r

(a) Show that $E(X) = n(2r - 1)$.	3
	•••••
	••••
	••••
	••••
	••••
	••••

	Question 24 (8 marks)	Marks
(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by $y = 6x + 1 - \frac{\pi}{2}$.	Consider $f(x) = \ln [\cos(3x)]$ where $-\frac{\pi}{6} < x < \frac{\pi}{6}$.	
(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by $y = 6x + 1 - \frac{\pi}{2}$.	(a) Find $f'(x)$ in simplest form.	1
(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by $y = 6x + 1 - \frac{\pi}{2}$.		
(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by $y = 6x + 1 - \frac{\pi}{2}$.		
(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by $y = 6x + 1 - \frac{\pi}{2}$.		
(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by $y = 6x + 1 - \frac{\pi}{2}$.		•••••
$y = 6x + 1 - \frac{\pi}{2}.$		•••••
$y = 6x + 1 - \frac{\pi}{2}.$		•••••
$y = 6x + 1 - \frac{\pi}{2}.$		
$y = 6x + 1 - \frac{\pi}{2}.$	(b) Show that the equation of the tangent to $y = \tan 3x$ at $x = \frac{\pi}{12}$ is given by	3
	12	
	2	
		••••••
		•••••
		•••••
		•••••

_					
_					
			\sim	 N I	

(c) Find the exact value of the x intercept of the tangent found in (b).	1
	••••
	••••
(d) Find the area bound by the curve $y = \tan 3x$, the tangent and the x axis.	3
Give your answer correct to four decimal places.	
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	• • • •

<u> </u>		Stu	dent	Nur	nber

Question 25 (7	marks)	
----------------	--------	--

Marks

3

The depth of the water in a harbour changes due to the tides and can be modelled with the equation $d = 12 + 4\cos\left(\frac{t}{3} - \frac{\pi}{6}\right)$, where d is the depth of the harbour in metres and t is the number of hours since midnight on Tuesday morning.

(a) Draw a neat sketch of the depth of the water d for $t \in [0, 6\pi]$.

(b) A boat needs 10 metres of water to be operated in the harbour, although if it motors out of the harbour, the water is always deep enough to operate. The boat uses 6 litres of petrol every hour that it is being used. If the boat is launched at 7:30 AM and leaves the harbour, and it takes 12 minutes to motor each way in and out of the harbour, what is the minimum amount of petrol that the boat must hold to make it back to its starting point? Answer to the nearest litre.

2023 JRAHS Mathematics Advanced HSC Trial Examination

Page 29

		01	dent	

Mathematics Advanced Section V Answer Booklet

23 marks. Attempt Questions 26–30.

Instructions

- Write you student number at the top of each page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your response should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Question 26 (5 marks)

Marks

A researcher conducted a survey of 16 students at a school, asking them for the number of minutes they spent on their device each night and the mark they received in their last examination as a percentage. He plotted the data on the graph below:

(a) Calculate the least squares regression line for the data.	1
(b) With evidence, describe the strength of the correlation between minutes spent on a	1
device by a student and their mark in an examination.	
	•••••

		Stu	dent	Nur	nber

(c) A new student is surveyed who spends 20 minutes on their device each night.	1
Predict their score on the next examination to the nearest percentage.	
	•••
(d) Another new student wanted to use the model in (a) to predict their next examination	2
but was told that their time spent on their device was too large. What is the smallest amount	
of time the student could have reported spending on their device? Assume the graduation in	
time measurement is one minute.	
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••

Question 27 (5 marks)

Marks

A long rectangular sheet of metal 28cm wide is to be made into a gutter by turning up sides of equal height xcm, perpendicular to the base as shown below:

1

$$A = 28x - 2x^2$$

•••••	•••••	•••••	•••••	•••••
		•••••	•••••	•••••

(b) Explain why this formula is only valid for $x \in (0,14)$.	1
	••••
	••••

_			<u> </u>	400+	

(c) Find the maximum value of A.	3
	•••••

Question 28 (4 marks)

Marks

A new artist releases a song on a music streaming platform. The number of 'listens' each hour for the first 5 hours is recorded in the table below.

Hour (H)	1	2	3	4	5
Listens (L)	13	36	62	94	138

(a) Show that the predicted number of listens in the 6 th hour is 206.	2
	••••
	· • • • •
(b) How many predicted 'listens' will the song have had at the conclusion of one day?	2
	••••
	••••
	••••
	••••
	•••••

Question 29 (5 marks)	Marks

A toxic substance in a lake is degrading naturally according to the formula $A(t) = 3000m^{-0.2t}$, where A is the number of grams of the substance remaining at t years and m > 0 is a constant. (a) If A = 2400 after 6 years, find the value of m correct to 1 decimal place. 1 (b) Fish can be reintroduced to the lake once the rate of change of the toxic substance is 3 greater than -20. After how many years can fish be reintroduced? Answer to one decimal place. (c) People can swim in the lake once the amount of the toxic substance is less than 50. In how many years can this happen, to the nearest year?

		Stu	dent	Nur	nber

Marks

A continuous random variable, X, has the following probability density function:

$$f(x) = \begin{cases} \frac{3\sqrt{x}}{2(\ln 2)\sqrt{x^3}} & \text{for } k \le x \le 8\\ 0 & \text{for all other values of } x \text{ in } \mathbb{R} \end{cases}$$

(a) Find the value of k . Leave your answer as an exact value.	2
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	••
	•••
(b) Find the median value of <i>X</i> as an exact value.	2
	•••

Katie has deliberately designed a biased six-sided die with the following probability distribution for X, the number showing on the uppermost face when the die is rolled.

x	1	2	3	4	5	6
P(X=x)	$1-\theta$	$1-\theta$	$1-\theta$	$1+\theta$	$1 + \theta$	$1+\theta$
	6	6	6	6	6	6

L	
(a) What values of θ allow for $P(X)$ to be a probability distribution	n function? 2
$must \leq P(X=n)=1$	1051-0517
8how 1 = 1-0 +1-0 +1-0 +1+0 +1+0 1+0	6
6 6 6 6 6	1 > 0 > -5 7 (1
$=3(1-\theta)$ $3(1+\theta)$	or
6 6	05 1+051
(no solution Many students	6
wro te (-1< 0<1) x	-1 < 0 < 5 J
	1 < 0 < 1 — ()
(b) Find $P(1 \le X \le 4)$ in terms of θ .	1
$1-\theta$ + $1-\theta$ + $1-\theta$ + $1+\theta$	
6 6 6	
$-4-2\theta$ $2-\theta$ (1)	
- b 3	

(c) Find the probability of rolling an even number in terms of θ .

 $P(x even) = 1 - \theta + 1 + \theta + 1 + \theta$ $= 3 + \theta$

1

		 	_
		- 1	
		 	 ٠.

Janet and Alan are playing a tennis match. The probability of Janet winning the first set is 0.3. After that, Janet's probability of winning a set is 0.6 if she won the previous set, or 0.4 if she lost the previous set. The match will continue until either Janet or Alan wins two sets.

(a) Draw a probability tree diagram to describe the match.

JJ = 0.18 JAJ = 0.048 JAA = 0.072 AJJ = 0.168 AJA = 0.112 AJA = 0.112 AJA = 0.42 AJA = 0.422nd Set

2

(b) Find the expected value of the number of sets that the match will last.

3

(c) Find the probability that Alan wins, given the match lasted 3 sets.

Question 13 (2 marks)

Marks

1

Two sectors A_1 and A_2 are constructed along the interval AC. AO = 4 and OC = 3 as shown in the diagram below.

2023 JRAHS Mathematics Advanced HSC Trial Examination

Page 9

If the area of A_1 is twice the area of A_2 , find the value of θ .

Formula in 2 reference sheet

 $A_1 = 2 \times A_2$ no cfe for wrong $\frac{1}{2} (4)^2 (\pi - \theta) = 2 \times \frac{1}{2} (3)^2 \theta$ — (i) formula $\frac{1}{2} (6)^2 (\pi - \theta) = 90$

170 = 817 0 = 817 or 84°42' or 84.71° — ()

Question 14 (2 marks)

Prove:

$$\frac{\cot x + \csc x}{\tan x + \sin x} = \cot x \csc x$$

2

 $LHS = \frac{\cos x}{\sin x} + \frac{1}{\sin x}$ $\frac{\sin x}{\cos x} + \frac{\sin x}{\sin x}$ $\frac{\sin x}{\cos x} + \frac{\sin x}{\sin x} + \frac{\sin x}{\sin x}$ $\frac{\sin x}{\cos x} + \frac{\sin x}{\sin x} + \frac{\sin x}{\sin x}$

 $\frac{\cos 2\pi (\cos n + 1)}{\sin^2 n + \sin^2 n \cos n} = \frac{1}{\tan n} \sin n - 1$ $= \frac{\cos \pi (1 + \cos n)}{\sin^2 \pi (1 + \cos n)} = \cot \pi \cos n$ = RHS

 $\int -\frac{\cos n}{\sin n} \times \frac{\int}{\sin n} = \cot n \csc n$

Question 15 (5 marks)

Marks

Solve $2\cos^2 x - 3\cos x = 2$ for $0 \le x \le 2\pi$, leaving your answer in exact form.

3

	2 cos2n-3 cosn-2=0 (05n 5		0)		Stu	dent	Nun	nber
2.00			/.						
	n +1 cosx								
COSX									
	$(2\cos n + 1)(\cos n - 2) = 0$								
	COS x = - 1 Or COS x = 2						\		
- 1	(a a a a ludia	20	ل			(<i>)</i> 		
	$n = \frac{1}{3}$								
	$3 \frac{1}{3}$								
,	3 3								•••••
		•••••		•••••	•••••	•••••	•••••	•••••	•••••
	(2)	•••••			•••••	•••••	•••••		•••••
					•••••	•••••	••••••		•••••
	(b) Solve $3 \sin x + \sqrt{3} \cos x = 0$ over the domain $0 \le x$	- 2							
	10130196331111177360311 = 0.09611116111111111111111111111111111111	~ 41	π.						2
	(b) Solve $3 \sin x + \sqrt{3} \cos x = 0$ over the domain $0 \le x$	≥ 2 <i>1</i>	π.						2
				x 7.					2
	$3 \sin x = -\sqrt{3} \cos x$			S 2c)				2
	$3 \sin x = -\sqrt{3} \cos x$			s X)				
	$3 \sin x = -\sqrt{3} \cos x$			3 X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			S 22)				2
	$3 \sin x = -\sqrt{3} \cos x$			S 2c)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			S X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			S >2)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$) X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			S X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			<i>s</i> ×)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			\$ X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$) X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			3 X)				2
	$3 \sin n = -\sqrt{3} \cos x$ $3 \tan x = -\sqrt{3}$ $x = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$			S 72)				2

Question 16 (5 marks)

Marks

A circle with centre O and radius 10m is drawn on a vertical wall, standing on a horizontal floor. Point A is vertically below O and $\angle AOB = 90^{\circ}$ as shown in the diagram below.

A laser pointer is aimed from a point D on the ground. The angles of elevation of A and B from D are 30° and 60° respectively. Let A be h metres above the ground and $\angle ADB = 30^{\circ}$. (a) Write expressions for AD and BD in terms of h.

(b) Hence find the exact value of h.

3

-> 0 = 4(h2-10h-50)

Section II extra writing space. $h = 573\sqrt{5}$ If you use this space, clearly indicate which question(s) you are answering. Leave at least $h = 5 + 5\sqrt{3}$ In the space in the

<u> </u>	4 = 10	1.1
Question	17 (7	marks)

Marks

Consider the curve $y = x^3 - 6x^2 + 7$.

(a) Find	the co	ordinat	es of ar	y stationary p	points and determi	ine their nature.	3

For stat pts need y'=0

 $3x^2 - 12x = 0$

3x(x-4)=0

 $\sim x = 4$

2 morre

y=7 y=-25

y'' = 6x - 12

at (4,-21

y'' = -12 y'' = 1

mum , appropriate

at (0,7)

+ (4,-25) V method det

y-ware 1 4

(b) Find the coordinates	of any points	of inflexion.
--------------------------	---------------	---------------

2

For point of inflection need y"=

...<u>J</u>

-12=0 y=-9

x 1.9 2

2.1

i. change in a

concavity at (2,-9)

second made for testing concavity chang

			e e
	S	tudent	Number

(c) Sketch the graph, clearly showing all the points found in (a) and (b) and y-intercepts. You do NOT need to find x-intercepts.

(1/2) All points in (9)(b)
marked in + general
cubic polynomial shape.

	_				
10001007					
1	- 1				
			1		
	17	1	100		
			-	 INI	

Student Number

Question 18 (5 marks)	Marks
(a) Differentiate xe^{5x} with respect to x .	2
$\frac{d^{2}n^{6n}}{d^{2n}} = n \cdot 5e^{5n} + e^{5n} \sqrt{1}$ $= e^{5n}(5n+1)$	
Mostly done wel	
(b) Hence evaluate $\int_{0}^{10} 5xe^{5x} dx$	3
(b) Hence evaluate $\int_{0}^{6} 5x e^{5x} dx = \int_{0}^{60} 5x e^{5x} + e^{5x} = \int_{0}^{60} 5x e^$	-e ⁵ⁿ da V Use hence
$= \left[xe^{5x} - e^{5x} \right]$	I from (a)
= 10 e ³ - e ³ - (0-1)
= 49e ⁵⁰ +1	√ 3rd mort Correct Substitution,
5	not pelessarily
	fully simplified.
2 gluen if 1-2 c	withmetic expers
	<u>Νν Ινάνς</u> >

	1		1	
			- 1	1
	1		- 1	
		Stud	ent Ni	ımhar

Differentiate $f(x) = x^2 - 4x + 5$ from first principles. $f'(x) = \lim_{h \to 0} \frac{(\mu + h)^2 - 4(\mu + h) + 5}{h} - x^2 + 4x - 5}$ $h \to 0$ $= \lim_{h \to 0} \frac{(\mu + h - x)(\mu + h + x) - 4x - 4h + 4x}{h}$ $h \to 0$ $= \lim_{h \to 0} h (2x + h) - 4h$ $h \to 0$ $h (2x + h) - 4h$ $h \to 0$ $= \lim_{h \to 0} h (2x + h) - 4h$ $h \to 0$ $= \lim_{h \to 0} h (2x + h) - 4h$ $h \to 0$ $= \lim_{h \to 0} h (2x + h) - 4h$ $h \to 0$ $= 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$ $x = 2x + 0 - 4 \text{Is a near cancellation of } h$	Question 19 (3 marks)	Marks
hoo h = $\lim_{h \to 0} \frac{(x+h-x)(x+h+x) - 4x-4h+4x}{h \to 0}$ = $\lim_{h \to 0} \frac{h(2x+h) - 4h}{h}$ = $\lim_{h \to 0} \frac{h(2x+h) - 4h}{h}$ = $\lim_{h \to 0} \frac{h(2x+h-4)}{h}$ = $2x+0-4$ V correct cancellation of h i. $f'(x) = 2x-4$ & Substitution of $h \to 0$		3
$=\lim_{h\to 0} (x+h-x)(x+h+x) - 4x - 4h + 4x$ $h\to 0 \qquad h \qquad \sqrt{\text{substitution}}$ $=\lim_{h\to 0} h(2x+h) - 4h$ $=\lim_{h\to 0} h\left(2x+h-4\right)$ $=\lim_{h\to 0} h\left(2x+h-4\right)$ $=2x+0-4 \qquad \text{Correct Cancellation of } h$ $=2x+0-4 \qquad \text{& Substitution of } h\to 0$ $+ \text{Must use first principles for}$	$f'(x) = \lim_{n \to \infty} (n+h)^2 - 4(n+h) + 5 - x^2 + 4x - 5$	
has h (2n+h) - 4h / Expand and simplify has a $h = \lim_{n \to \infty} h \left(\frac{2n+h-4}{n} \right)$ = $\lim_{n \to \infty} h \left($		
= $\lim_{h\to 0} h(2n+h) - 4h$ $h\to 0$ = $\lim_{h\to 0} h(2n+h-4)$ $h\to 0$ = $2n+0-4$ (so meet cancellation of h $f'(n) = 2n-4$ & Substitution of $h\to 0$	<u> </u>	
$= \lim_{h \to 0} h (2n+h-4)$ $= 2n+0-4 \text{Correct cancellation of } h$ $= 2n-4 \text{k Substitution of } h \to 0$ $+ \text{ Must use first principles for}$	······································	17011
$= \lim_{h \to 0} h (2n+h-4)$ $= 2n+0-4 \text{Correct cancellation of } h$ $= 2n-4 \text{k Substitution of } h \to 0$ $+ \text{ Must use first principles for}$	= lim h (2x+h) - 4h	simplif
= 2n + 0 - 4 Correct cancellation of h $: f'(n) = 2n - 4 $ k substitution of h > 0 $+ Must use first principles for$		
= $2n + 0 - 4$ / Correct cancellation of h : $f'(n) = 2n - 4$ k substitution of h > 0 + Must use first principles for		•••••
$f(n) = 2n-4$ k substitution of $h \rightarrow 0$ $+ \text{ Must use first principles for}$		K 1/2
+ Must use first principles for	f'(x) = 2x - 4 & Substitution of	
# Must use first principles for any marks.	<i>γ</i>	1
A Must use first principles for any marks.		•••••
any morts.	+ Must use first priverples for	8
	any monts.	•••••
	J	•••••
		••••••
		••••••
		••••••
		••••••

Student Number

Question 20 (6 marks) Marks
The velocity of a particle travelling on the x axis is given by $v(t) = \frac{1}{t+1} - \frac{1}{2}$ for $t \ge 0$.
(a) Show that the particle is stationary when $t = 1$.
v(i) = 1 - 1 Must show
1+1 2 Substitution
= 0 : stationary at a t=1 AND concluding statement
STOHEMIENII
(b) Explain why the particle is moving to the left for all times $t > 1$.
$a(t) = v'(t)$ $\sqrt{\text{Mothematical reasoning}}$
1 eg. Finding a (t) of use of (t+1)2 in equalities
$a(t) < 0 \forall t > 0 $ Using words to justify why.
Since v(1) = 0 and a(1) < 0 the particle will move to
the left after t=1. Since a(t)<0 + t>1 the particle will
always more to the left for t>1.
(c) Find the distance travelled by the particle in the first 3 seconds, correct to one decimal 3
place. $\sqrt{\frac{3}{2}}$
$d = \int_{0}^{1} \frac{1}{t+1} - \frac{1}{2} dt + \int_{0}^{3} \frac{1}{t+1} - \frac{1}{2} dt \Big \sqrt{Set \psi}$
$= \left[\ln \left t + 1 \right - \frac{t}{2} \right]^{\frac{1}{2}} + \left[\ln \left t + 1 \right - \frac{t}{2} \right]^{\frac{3}{2}} $ \(\square \text{correct integration}
$= \left\lfloor \frac{\ln t+1 - \frac{1}{2}}{2} \right\rfloor_{0} + \left\lfloor \frac{\ln t+1 - \frac{1}{2}}{2} \right\rfloor_{1} + \left\lfloor \frac{\ln t+1 - \frac{1}{2}}{2} \right\rfloor_{1}$
$-\ln 2 - 1 - (n-n) + \left[\ln 4 - \frac{3}{2} - \ln 2 + \frac{1}{2} \right]$
$= \ln 2 - \frac{1}{2} - (0 - 0) + \left \ln 4 - \frac{3}{2} - \ln 2 + \frac{1}{2} \right $
$= \ln 2 - \frac{1}{2} + \ln 2 - \ln 4 + 1$
$= \ln \frac{2 \times 2}{4} + \frac{1}{2}$
= 1
, Final mark for correct substitution.
Final mark for correct substitution. C. $d = 0.5$ No moves awarded if integrated
expression has no logs.

Question 23 (3 marks)

A discrete random variable has a probability distribution as shown in the table below where nis a finite, positive integer and r is any real number other than 1.

x	r	r ²	r^3	•••	r^k	•••	r^n
P(X=x)	r^n	r^{n-1}	r^{n-2}		r^{n-k+1}	•••	r

(a) Show that $E(X) = n(2r - 1)$.
$E(x) = r \cdot r^{n} + r^{2} \cdot r^{n-1} + r^{3} \cdot r^{n-2} + \dots + r^{k} \cdot r^{-k+1} + \dots + r^{n} \cdot r$
$= \Gamma^{n+1} + \Gamma^{n+1} + \Gamma^{n+1} + \dots + \Gamma^{n+1} + \dots + \Gamma^{n+1}$
= nrnt((1) (1) Correct expression for E(X
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
mary forgot about this many forgot about this
HISO, F + F + F + 1 - 1 (PROBABILITY S O) POR)
$\frac{\Gamma(\Gamma^{n}-1)}{\Gamma-1}=1$ $\frac{\Gamma(\Gamma^{n}-1)}{\Gamma-1}=1$ $\frac{\Gamma(\Gamma^{n}-1)}{\Gamma-1}=1$ $\frac{\Gamma(\Gamma^{n}-1)}{\Gamma-1}=1$ $\frac{\Gamma(\Gamma^{n}-1)}{\Gamma-1}=1$ $\frac{\Gamma(\Gamma^{n}-1)}{\Gamma-1}=1$
$\frac{\Gamma(\Gamma^{n}-1)=\Gamma-1}{\Gamma^{n+1}-\Gamma=\Gamma-1} \qquad \frac{W}{\text{some working ont.}} \left(\frac{1}{2}\right)$
n+1-r=r-1 (e.z 1ewgn is-ig (if))
cn+1-2c-1
sub into (1); Substitution
sub into (1); E(x) = n(2r-1) as required. O Substitution
Question 24 (8 marks) Marks

Consider $f(x) = \ln \left[\cos(3x)\right]$ where $-\frac{\pi}{6} < x < \frac{\pi}{6}$. Well done (a) Find f'(x) in the simplest form.

1 $f'(n) = \frac{-3 \sin 3x}{\cos 3n}$

= -3 tan3n

when
$$x=\frac{\pi}{12}$$
, $y=\tan \frac{3\pi}{12}$

= tan #

 $y'=3\sec^23n$ (Correct dy

At $x = \frac{\pi}{12}$: $m_T = 3 \sec^2 \frac{\pi}{4}$

 $= 3\left(\sqrt{2}\right)^{\frac{7}{2}}$

= 6 (1) correct m=6

-- eqn tangent: 4-1=61

 $y-1=6x-\pi$ $y-1=6x-\pi$ 7 Show

y=6x+1-=

 $(y-y_+)=m(x-x,$

OR 4=MX+5

(c) Find the exact value of the x intercept of the tangent found in (b).

 $y=0 \Rightarrow 6xH-\frac{\pi}{2}=0$ $x=\pi-\frac{1}{2}$

1 -1 is accepted

but simpled version

is preferred:

Give your answer correct to four decimal places.

$$A = \int_{0}^{\frac{\pi}{12}} \tan 3x \, dx - \frac{1}{2} \left(\frac{\pi}{12} - \left(\frac{\pi}{12} - \frac{1}{6} \right) \right) (1) \, \mathbf{0}$$

$$= -\frac{1}{3} \int_{0}^{\frac{\pi}{12}} -3 \tan 3\pi \, d\pi - \frac{1}{2} (\frac{1}{6}) (1)$$

$$= -\frac{1}{3} \int_{0}^{\frac{\pi}{12}} -3 \tan 3x \, dx - \frac{1}{2} (\frac{1}{6}) (1)$$

$$= -\frac{1}{3} \left[\ln \cos(3x) \right]_{0}^{\frac{\pi}{12}} - \frac{1}{12} \quad \text{(b) showing from } \ln \cos(3x)$$

The depth of the water in a harbour changes due to the tides and can be modelled with the equation $d = 12 + 4\cos\left(\frac{t}{3} - \frac{\pi}{6}\right)$, where d is the depth of the harbour in metres and t is the number of hours since midnight on Tuesday morning.

(b) A boat needs 10 metres of water to be operated in the harbour, although if it motors out of the harbour, the water is always deep enough to operate. The boat uses 6 litres of petrol every hour that it is being used. If the boat is launched at 7:30 AM and leaves the harbour, and it takes 12 minutes to motor each way in and out of the harbour, what is the minimum amount of petrol that the boat must hold to make it back to its starting point? Answer to the nearest litre.

$E = 47.96 + 0.61 \times 20$ = 60.16 $\approx 60\%$

1 Correct Sub + answer

A from Bragh is acceptable

ONLY of the regression line
is drawn - integrated.

* no randing penalty

(d) Another new student wanted to use the model in (a) to predict their next examination but was told that their time spent on their device was too large. What is the smallest amount of time the student could have reported spending on their device? Assume the graduation in time measurement is one minute.

47.96 + 0.61 + > 100 (1) 0.61 + > 52.04 t > 85.31147... At least 86 min (1)

(a) Show that the formula for the cross-sectional area, A, of the gutter is

1

 $A = 28x - 2x^2$ length = 28 - x - x

= 28-2x

= 28-2n=> A = x(28-2n)

height = n $A = 28n - 2n^2$

(b) Explain why this formula is only valid for $x \in (0,14)$. If n=0 there is no height for rectangle if n=14 thee is no base for rectangle.

n>0 as n is length, not enough metal for 2x>28

:. x E (0,14)

Clear explanation for both 2=0 or X=14 / A>0, ma parabola

- I deducted if only discussed one

(c) Find the maximum	value of A. Imax need	dA =0	Well do		
	i.e. 28	-4x=0			
	d ² A = dπ ²	-4	7 m	at test x	=7
	A _{max} =	7 (28-14) 98cm² (1)	24	uer test the	e 2nd derivative
			Pelest	e to apare	also Con
Question 28 (4	marks)	Poorly	done.		Marks
A new artist rele	eases a song on	a music streaming in the table below	ng platform. Th	e number of 'lis	stens' each hour
Hour (H)	1	2	3	4	5
Listens (L)	13	36	62	94	138
		mber of listens in	the 6 th hour is	206.	2
L2-L	1 = 23 = 2	0+6 Ai	2		
L4-L	3 = 32 = 2	0+12	1) postt	ern bui	lding
***************************************	+=44 = 20 -5= 20+1			(8)(1)	
	= 68		46 = 138		ansver
			= 200	·J	

(b) How many predicted 'listens' will the song have had at the conclusion of one day?	2
$L_{24} = 10 + 20(23) + 3(2)^{23}$	
$L_{24} = 10 + 20(23) + 3(2)^{23}$ $S_{24} = \frac{24}{5}(10 + 10 + 20(23)) + 3(2^{24} - 1) $ $= 12(480) + 3(2^{24} - 1)$	or GP
= 50 337 405 (2) Correct aus	 Ser .
Question 29 (5 marks)	Marks
A toxic substance in a lake is degrading naturally according to the formula $A(t) = 3000m^{-0.2t}$, where A is the number of grams of the substance remaining at t y and $m > 0$ is a constant.	
(a) If $A = 2400$ after 6 years, find the value of m correct to 1 decimal place. $2400 = 3000 \text{ m}^{-1/2}$ $\frac{4}{5} = m^{-\frac{2}{5}}$	1
$m = \frac{4}{5} = \frac{1}{5} = $	
(b) Fish can be reintroduced to the lake once the rate of change of the toxic substance is greater than -20. After how many years can fish be reintroduced? Answer to one decimal	
Need A'(t) > -20 () & poorly done, 1st direction	· .
ie. $(300\% \ln(1.2))(-0.2 \text{ m}^{-0.26}) > -2\%$ eff decked $-60 \ln(\frac{6}{5})(1.2)^{0.24} > -2$ $1.2^{-0.26} < \frac{1}{30 \cdot \ln(1.2)} \text{ correct charge}$ $-0.26 \ln(1.2) < -\ln(30 \ln(1.2)) \text{ or a smiler}$ $+ > \ln(30 \ln(1.2))$	of bos
-0.2t n .2 < - In (30 n .2) or a smil or t > In (30 n .2)	operation.
(2) / 12	
t > 46.5993724 1 eef an	ans or

(c) People can swim in the lake once the amount of the toxic substance is less than 50. In
how many years can this happen, to the nearest year?
$300\phi (1.2)^{-0.26} < 5\phi$
$-0.2t \ln(1.2) < \ln(\frac{1}{60})$ $-0.2t \ln(1.2) < \ln(\frac{1}{60})$ $-0.2 \ln(1.2)$ $-0.2 \ln(1.2)$ Safe to sum after 113 years $-0.2 \ln(1.2)$ Suite the deposit
$t > \ln(\frac{1}{60})$ - must round to
-0.2 (n(1.2) Lico the despois
t > 112.283611 Skills have been tested in part 6
Question 30 (4 marks) A continuous random variable, X, has the following probability density function:
$\int 3\sqrt{x} \qquad \text{for } k \le x \le 8$
$f(x) = \begin{cases} \frac{3\sqrt{x}}{2(\ln 2)\sqrt{x^3}} & \text{for } k \le x \le 8\\ 0 & \text{for all other values of } x \text{ in } \mathbb{R} \end{cases}$
(a) Find the value of k. Leave your answer as an exact value.
$\int_{R}^{8} \frac{3\sqrt{n}}{2(\ln 2)\sqrt{n^{2}}} dn = 1$
$\left[\begin{array}{c} \log \sqrt{x^3} \right]^8 = 1$
$\log \sqrt{8^3} - \log \sqrt{k^3} = \log 2$
$\sqrt{\left(\frac{8}{R}\right)^3} = 2$
$\frac{8}{100} = \frac{3}{4}$
$\frac{3}{127}$, $\frac{8}{2^{43}}$, $e^{\frac{1}{3}}$, $e^{$
e 26

(b) Find the median value of X as an exact value. $M = 3\sqrt{2} = 0.5$	2
J432 (2/n2) V215	
$\log \sqrt{m^3 - \log \sqrt{(4\sqrt[3]{2})^3}} = \frac{1}{2}$	
$\log_{100}^{2} \text{m}^3 - \log_{100}^{2} 2 \times 4^3 = \log_{100}^{2} 2$	
$\frac{m^2}{m^2} = 2$	
2×4³	
$m = 4\sqrt[3]{4}$ is the median va	rhie
$3\sqrt{28} = 2^{\frac{3}{2}} = \sqrt[3]{128} \times 4^{\frac{1}{4}} = \frac{1}{e^{-\frac{1}{6}}} = \frac{1}{e^{-\frac{1}{6}}}$ M26.349	6